19 research outputs found

    Multi-sensor fusion-based time-frequency imaging and transfer learning for spherical tank crack diagnosis under variable pressure conditions.

    Get PDF
    In this paper, a crack diagnosis framework is proposed that combines a new signal-to-imaging technique and transfer learning-aided deep learning framework to automate the diagnostic process. The objective of the signal-to-imaging technique is to convert one-dimensional (1D) acoustic emission (AE) signals from multiple sensors into a two-dimensional (2D) image to capture information under variable operating conditions. In this process, a short-time Fourier transform (STFT) is first applied to the AE signal of each sensor, and the STFT results from the different sensors are then fused to obtain a condition-invariant 2D image of cracks; this scheme is denoted as Multi-Sensors Fusion-based Time-Frequency Imaging (MSFTFI). The MSFTFI images are subsequently fed to the fine-tuned transfer learning (FTL) model built on a convolutional neural network (CNN) framework for diagnosing crack types. The proposed diagnostic scheme (MSFTFI + FTL) is tested with a standard AE dataset collected from a self-designed spherical tank to validate the performance under variable pressure conditions. The results suggest that the proposed strategy significantly outperformed classical methods with average performance improvements of 2.36–20.26%

    Acoustic spectral imaging and transfer learning for reliable bearing fault diagnosis under variable speed conditions.

    Get PDF
    Incipient fault diagnosis of a bearing requires robust feature representation for an accurate condition-based monitoring system. Existing fault diagnosis schemes are mostly confined to manual features and traditional machine learning approaches such as artificial neural networks (ANN) and support vector machines (SVM). These handcrafted features require substantial human expertise and domain knowledge. In addition, these feature characteristics vary with the bearing's rotational speed. Thus, such methods do not yield the best results under variable speed conditions. To address this issue, this paper presents a reliable fault diagnosis scheme based on acoustic spectral imaging (ASI) of acoustic emission (AE) signals as a precise health state. These health states are further utilized with transfer learning, which is a machine learning technique, which shares knowledge with convolutional neural networks (CNN) for accurate diagnosis under variable operating conditions. In ASI, the amplitudes of the spectral components of the windowed time-domain acoustic emission signal are transformed into spectrum imaging. ASI provides a visual representation of acoustic emission spectral features in images. This ensures enhanced spectral images for transfer learning (TL) testing and training, and thus provides a robust classifier technique with high diagnostic accuracy

    Bearing fault diagnosis using multidomain fusion-based vibration imaging and multitask learning.

    Get PDF
    Statistical features extraction from bearing fault signals requires a substantial level of knowledge and domain expertise. Furthermore, existing feature extraction techniques are mostly confined to selective feature extraction methods namely, time-domain, frequency-domain, or time-frequency domain statistical parameters. Vibration signals of bearing fault are highly non-linear and non-stationary making it cumbersome to extract relevant information for existing methodologies. This process even became more complicated when the bearing operates at variable speeds and load conditions. To address these challenges, this study develops an autonomous diagnostic system that combines signal-to-image transformation techniques for multi-domain information with convolutional neural network (CNN)-aided multitask learning (MTL). To address variable operating conditions, a composite color image is created by fusing information from multi-domains, such as the raw time-domain signal, the spectrum of the time-domain signal, and the envelope spectrum of the time-frequency analysis. This 2-D composite image, named multi-domain fusion-based vibration imaging (MDFVI), is highly effective in generating a unique pattern even with variable speeds and loads. Following that, these MDFVI images are fed to the proposed MTL-based CNN architecture to identify faults in variable speed and health conditions concurrently. The proposed method is tested on two benchmark datasets from the bearing experiment. The experimental results suggested that the proposed method outperformed state-of-the-arts in both datasets

    Understanding 3D mid-air hand gestures with interactive surfaces and displays: a systematic literature review

    Get PDF
    3D gesture based systems are becoming ubiquitous and there are many mid-air hand gestures that exist for interacting with digital surfaces and displays. There is no well defined gesture set for 3D mid-air hand gestures which makes it difficult to develop applications that have consistent gestures. To understand what gestures exist we conducted the first comprehensive systematic literature review on mid-air hand gestures following existing research methods. The results of the review identified 65 papers where the mid-air hand gestures supported tasks for selection, navigation, and manipulation. We also classified the gestures according to a gesture classification scheme and identified how these gestures have been empirically evaluated. The results of the review provide a richer understanding of what mid-air hand gestures have been designed, implemented, and evaluated in the literature which can help developers design better user experiences for digital interactive surfaces and displays
    corecore